Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Front Chem ; 12: 1356304, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469428

RESUMO

The advances in nanocomposites incorporating bioactive substances have the potential to transform the food packaging sector. Different nanofillers have been incorporated into polymeric matrixes to develop nanocomposite materials with improved mechanical, thermal, optical and barrier properties. Nanoclays, nanosilica, carbon nanotubes, nanocellulose, and chitosan/chitin nanoparticles have been successfully included into polymeric films, resulting in packaging materials with advanced characteristics. Nanostructured antimicrobial films have promising applications as active packaging in the food industry. Nanocomposite films containing antimicrobial substances such as essential oils, bacteriocins, antimicrobial enzymes, or metallic nanoparticles have been developed. These active nanocomposites are useful packaging materials to enhance food safety. Nanocomposites are promising materials for use in food packaging applications as practical and safe substitutes to the traditional packaging plastics.

2.
Mol Biotechnol ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546763

RESUMO

Lysobacter is known as a bacterial genus with biotechnological potential, producing an array of enzymes, antimicrobial metabolites, and bioactive antioxidant compounds, including aryl polyene (APE) pigments that have been described as protecting substances against photooxidative damage and lipid peroxidation. In this study, the pigment extracted from keratinolytic Lysobacter sp. A03 isolated from Antarctic environment was characterized. The results of KOH test, UV-vis spectroscopy, CIELAB color system, 1H-NMR, and FTIR-ATR spectroscopy suggest the pigment is a yellow xanthomonadin-like pigment. The in vitro antioxidant activity of the pigment was confirmed by the scavenging of ABTS and DPPH radicals. In silico analysis of the genome through antiSMASH software was also performed and the secondary metabolite gene clusters for APE and resorcinol synthesis were identified, suggesting that proteins responsible for the pigment biosynthesis are encoded in Lysobacter A03 genome.

3.
Int J Food Microbiol ; 415: 110644, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38417280

RESUMO

Fungal control strategies based on the use of Bacillus have emerged in agriculture as eco-friendly alternatives to replace/reduce the use of synthetic pesticides. Bacillus sp. P1 was reported as a new promising strain for control of Aspergillus carbonarius, a known producer of ochratoxin A, categorized as possible human carcinogen with high nephrotoxic potential. Grape quality can be influenced by vineyard management practices, including the use of fungal control agents. The aim of this study was to evaluate, for the first time, the quality parameters of Chardonnay grapes exposed to an antifungal Bacillus-based strategy for control of A. carbonarius, supporting findings by genomic investigations. Furthermore, genomic tools were used to confirm that the strain P1 belongs to the non-pathogenic species Bacillus velezensis and also to certify its biosafety. The genome of B. velezensis P1 harbors genes that are putatively involved in the production of volatiles and hydrolytic enzymes, which are responsible for releasing the free form of aroma compounds. In addition to promote biocontrol of phytopathogenic fungi and ochratoxins, the treatment with B. velezensis P1 did not change the texture (hardness and firmness), color and pH of the grapes. Heat map and hierarchical clustering analysis (HCA) of volatiles evaluated by GC/MS revealed that Bacillus-treated grapes showed higher levels of compounds with a pleasant odor descriptions such as 3-hydroxy-2-butanone, 2,3-butanediol, 3-methyl-1-butanol, 3,4-dihydro-ß-ionone, ß-ionone, dihydroactinidiolide, linalool oxide, and ß-terpineol. The results of this study indicate that B. velezensis P1 presents desirable properties to be used as a biocontrol agent.


Assuntos
Aspergillus , Bacillus , Norisoprenoides , Ocratoxinas , Vitis , Humanos , Vitis/microbiologia , Bacillus/genética , Bacillus/química , Genômica
4.
Braz J Microbiol ; 55(1): 269-280, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228937

RESUMO

Pseudomonas sp. 4B isolated from the effluent pond of a bovine abattoir was investigated as antifungal against toxigenic fungi. The complete genome of Pseudomonas 4B was sequenced using the Illumina MiSeq platform. Phylogenetic analysis and genome comparisons indicated that the strain belongs to the Pseudomonas aeruginosa group. In silico investigation revealed gene clusters associated with the biosynthesis of several antifungals, including pyocyanin, rhizomide, thanamycin, and pyochelin. This bacterium was investigated through antifungal assays, showing an inhibitory effect against all toxigenic fungi tested. Bacterial cells reduced the diameter of fungal colonies, colony growth rate, and sporulation of each indicator fungi in 10-day simultaneous growing tests. The co-incubation of bacterial suspension and fungal spores in yeast extract-sucrose broth for 48 h resulted in reduced spore germination. During simultaneous growth, decreased production of aflatoxin B1 and ochratoxin A by Aspergillus flavus and Aspergillus carbonarius, respectively, was observed. Genome analysis and in vitro studies showed the ability of P. aeruginosa 4B to reduce fungal growth parameters and mycotoxin levels, indicating the potential of this bacterium to control toxigenic fungi. The broad antifungal activity of this strain may represent a sustainable alternative for the exploration and subsequent use of its possible metabolites in order to control mycotoxin-producing fungi.


Assuntos
Antifúngicos , Micotoxinas , Animais , Bovinos , Pseudomonas/metabolismo , Filogenia , Aspergillus flavus/metabolismo , Micotoxinas/metabolismo , Pseudomonas aeruginosa/metabolismo , Fungos/metabolismo
5.
J Sci Food Agric ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041655

RESUMO

BACKGROUND: Products fermented with lactic acid bacteria based on whole grain flours of red or white sorghum (Sorghum bicolor (L.) Moench) added with malted sorghum flour, or with skim milk (SM) were developed. Composition, protein amino acid profile, total acidity, pH, prebiotic potential, and bio-functional properties after simulation of gastrointestinal digestion were evaluated. RESULTS: In all cases, a pH of 4.5 was obtained in approximately 4.5 h. The products added with SM presented higher acidity. Products made only with sorghum presented higher total dietary fiber, but lower protein content than products with added SM, the last ones having higher lysine content. All products exhibited prebiotic potential, white sorghum being a better ingredient to promote the growth of probiotic bacteria. The addition of malted sorghum or SM significantly increased the bio-functional properties of the products: the sorghum fermented products added with SM presented the highest antioxidant (ABTS•+ inhibition, 4.7 ± 0.2 mM Trolox), antihypertensive (Angiotensin converting enzyme-I inhibition, 57.3 ± 0.5%) and antidiabetogenic (dipeptidyl-peptidase IV inhibition, 31.3 ± 2.1%) activities, while the products added with malted sorghum presented the highest antioxidant (reducing power, 1.6 ± 0.1 mg ascorbic acid equivalent/mL) and antidiabetogenic (α-amylase inhibition, 38.1 ± 0.9%) activities. CONCLUSION: The fermented whole grain sorghum-based products could be commercially exploited by the food industry to expand the offer of the three high-growth markets: gluten-free products, plant-based products (products without SM), and functional foods. © 2023 Society of Chemical Industry.

6.
Curr Microbiol ; 80(12): 399, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910267

RESUMO

Nowadays, there is a great interest on rapid and effective methods for initial identification of probiotic bacteria. In this work, potential probiotic features of the lactic acid bacteria strain ItalPN16 isolated from a traditional Brazilian cheese were studied using bioinformatic tools. The complete genome sequence was obtained, and in silico analyses were carried out to identify the strain and its potential probiotic properties. The sequenced genome (3.02 Mb) presented 3126 protein-coding sequences distributed on 244 SEED subsystems, classifying the strain as nomadic lactobacilli. Phylogenetic and ANI analyses allowed to locate the ItalPN16 strain as a member of the Lacticaseibacillus paracasei group, due to the highest number of orthologous genes in common with reference L. paracasei strains (>98%). In silico analyses revealed the presence of CDSs related to microbe-host interactions, such as adhesion proteins and exopolysaccharide biosynthesis genes. The comparative analysis reveals the presence of a strain-specific glycosyl transferases, compared with other three L. paracasei strains and a high level of protein expression (92%) with the probiotic L. paracasei BL29. The results obtained here indicated interesting probiotic features of the strain L. paracasei ItalPN16 that could favor a future application in the food industry.


Assuntos
Lacticaseibacillus paracasei , Probióticos , Lacticaseibacillus , Filogenia , Lactobacillus , Probióticos/metabolismo
7.
Food Res Int ; 173(Pt 1): 113172, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803529

RESUMO

Formulations of biodegradable films using macrocarpa peach palm flour (low amylose starch), chitosan and glycerol, were developed and the effects of the drying temperature on films by assessing their physicochemical, mechanical, barrier, optical, structural, antioxidant properties, and the biodegradability in soil were evaluated. Chitosan enhanced the mechanical properties of the films, but they showed no antimicrobial activity against the tested food-borne pathogens, except for Listeria monocytogenes, for which the inhibition zone was from 0.1 to 0.6 cm. Films with higher concentrations of peach palm flour are opaquer, with better antioxidant characteristics and content of phenolic compounds compared to films made with lower concentrations of flour. The films presented a yellowish color because of the carotenoids found in peach palm flour, 29.63 µg 100 g-1, and exhibited a C-type X-ray pattern, characteristic peak of materials where amylose and amylopectin are present. After 15 days in soil, the films lost 30% of their initial weight. Therefore, these results suggest that the development of films as food preservative is a promising field and that the material used in the study are suitable for their formulation.


Assuntos
Arecaceae , Quitosana , Antioxidantes , Amilose , Quitosana/química , Arecaceae/química , Solo
8.
Artigo em Inglês | MEDLINE | ID: mdl-37589783

RESUMO

The gut microbiome plays a critical role to all animals and humans health. Methods based on ex vivo cultures are time and cost-effective solutions for rapid evaluation of probiotic effects on microbiomes. In this study, we assessed whether the protein secretome from the potential probiotic Enterococcus durans LAB18S grown on fructoligosaccharides (FOS) and galactoligosaccharides (GOS) had specific effects on ex vivo cultured intestinal microbiome obtained from a healthy individual. Metaproteomics was used to evaluate changes in microbial communities of the human intestinal microbiome. Hierarchical clustering analysis revealed 654 differentially abundant proteins from the metaproteome samples, showing that gut microbial protein expression varied on the presence of different E. durans secretomes. Increased amount of Bacteroidetes phylum was observed in treatments with secretomes from E. durans cultures on FOS, GOS and albumin, resulting in a decrease of the Firmicutes to Bacteroidetes (F/B) ratio. The most functionally abundant bacterial taxa were Roseburia, Bacteroides, Alistipes and Faecalibacterium. The results suggest that the secretome of E. durans may have favorable effects on the intestinal microbial composition, stimulating growth and different protein expression of beneficial bacteria. These findings suggest that proteins secreted by E. durans growing on FOS and GOS have different effects on the modulation of gut microbiota functional activities during cultivation.

9.
Foods ; 12(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37444286

RESUMO

In the food sector, one of the most important economic activities is the dairy industry, which has been facing many challenges in order to meet the increasing demand by consumers for natural and minimally processed products with high quality. In this sense, the application of innovative and emerging technologies can be an interesting alternative, for example, the use of nanotechnology in packaging and as delivery systems. This technology has the potential to improve the quality and safety of dairy products, representing an interesting approach for delivering food preservatives and improving the mechanical, barrier and functional properties of packaging. Several applications and promising results of nanostructures for dairy product preservation can be found throughout this review, including the use of metallic and polymeric nanoparticles, lipid-based nanostructures, nanofibers, nanofilms and nanocoatings. In addition, some relevant examples of the direct application of nanostructured natural antimicrobials in milk and cheese are presented and discussed, as well as the use of milk agar as a model for a preliminary test. Despite their high cost and the difficulties for scale-up, interesting results of these technologies in dairy foods and packaging materials have promoted a growing interest of the dairy industry.

10.
Lett Appl Microbiol ; 76(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37385826

RESUMO

The production of probiotic bacteria requires specific and expensive culture media for maintain their viability and metabolic response during gastro-intestinal transit and cell adhesion process. The aim of this study was to compare the ability of the potential probiotic Laticaseibacillus paracasei ItalPN16 to grow in plain sweet whey (SW) and acid whey (AW), evaluating changes in some probiotic properties related to the culture media. Pasteurized SW and AW were suitable media for L. paracasei growth, since counts above 9 Log CFU/ml were achieved using <50% of the total sugars in both whey samples after 48 h at 37°C. The L. paracasei cells obtained from AW or SW cultures showed increased resistance to pH 2.5 and 3.5, higher autoaggregation, and lower cell hydrophobicity, as compared with the control of MRS. SW also improved the biofilm formation ability and cell adhesion capability to Caco-2 cells. Our results indicate that the L. paracasei adaptation to the SW conditions, inducing metabolic changes that improved its stability to acid stress, biofilm formation, autoaggregation, and cell adhesion properties, which are important functional probiotic properties. Overall, the SW could be considered as low-cost culture medium for sustainable biomass production of L. paracasei ItalPN16.


Assuntos
Queijo , Lacticaseibacillus paracasei , Probióticos , Humanos , Lacticaseibacillus , Soro do Leite , Queijo/microbiologia , Células CACO-2 , Probióticos/metabolismo , Meios de Cultura
11.
Int J Food Microbiol ; 389: 110107, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36731201

RESUMO

Bacillus-based biocontrol agents have emerged as a strategy to eliminate or reduce the use of synthetic fungicides that are detrimental to health and the environment. In vineyards, a special concern arises from the control of Aspergillus carbonarius, a fungus known for its potential to produce ochratoxins. Ochratoxin A (OTA) is the most toxic form among ochratoxins and its maximum limit in wine has been established in Europe and Brazil as 2 µg/kg. Wine quality, especially the volatile profile, may be influenced by the antifungal strategies, since fungicide residues are transferred from grapes to must during winemaking. The objective of this study was to evaluate, for the first time, the impact of a biocontrol strategy containing Bacillus velezensis P1 on the volatile profile and occurrence of ochratoxins when grapes infected with A. carbonarius were used in winemaking. The evaluation of ochratoxins was carried out by liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QToF-MS), and volatile compounds were analyzed using comprehensive two-dimensional gas chromatography coupled to quadrupole mass spectrometry (GC × GC/qMS). Six ochratoxins were identified in must prepared with Chardonnay grapes inoculated with A. carbonarius (ochratoxin α, ochratoxin ß, ochratoxin α methyl-ester, ochratoxin α amide, N-formyl-ochratoxin α amide and OTA). Although winemaking causes a decrease in the levels of all forms of ochratoxins, the co-occurrence of these mycotoxins was verified in wine made with grapes containing A. carbonarius. B. velezensis P1 prevented the occurrence of ochratoxins in must, ensuring the safety of wines. Regarding the volatile profile, a predominant presence of terpenic compounds was verified in samples treated with B. velezensis when compared with those not treated with the biocontrol strategy, whereas the presence of A. carbonarius resulted in a higher concentration of volatile compounds with an odor described as fatty/waxy, possibly compromising wine quality. Therefore, B. velezensis P1 is a new biofungicide possibility to produce ochratoxin-free grapes and high-quality wines.


Assuntos
Ocratoxinas , Vitis , Vinho , Vitis/microbiologia , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Vinho/microbiologia , Ocratoxinas/análise , Europa (Continente) , Cromatografia Líquida
12.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677622

RESUMO

Liposomes are among the most studied nanostructures. They are effective carriers of active substances both in the clinical field, such as delivering genes and drugs, and in the food industry, such as promoting the controlled release of bioactive substances, including food preservatives. However, toxicological screenings must be performed to ensure the safety of nanoformulations. In this study, the nematode Caenorhabditis elegans was used as an alternative model to investigate the potential in vivo toxicity of nanoliposomes encapsulating the antimicrobial peptide nisin. The effects of liposomes containing nisin, control liposomes, and free nisin were evaluated through the survival rate, lethal dose (LD50), nematode development rate, and oxidative stress status by performing mutant strain, TBARS, and ROS analyses. Due to its low toxicity, it was not possible to experimentally determine the LD50 of liposomes. The survival rates of control liposomes and nisin-loaded liposomes were 94.3 and 73.6%, respectively. The LD50 of free nisin was calculated as 0.239 mg mL-1. Free nisin at a concentration of 0.2 mg mL-1 significantly affected the development of C. elegans, which was 25% smaller than the control and liposome-treated samples. A significant increase in ROS levels was observed after exposure to the highest concentrations of liposomes and free nisin, coinciding with a significant increase in catalase levels. The treatments induced lipid peroxidation as evaluated by TBARS assay. Liposome encapsulation reduces the deleterious effect on C. elegans and can be considered a nontoxic delivery system for nisin.


Assuntos
Antibacterianos , Nanopartículas , Nisina , Fosfatidilcolinas , Animais , Antibacterianos/toxicidade , Caenorhabditis elegans , Lecitinas , Lipossomos , Nisina/toxicidade , Espécies Reativas de Oxigênio , Substâncias Reativas com Ácido Tiobarbitúrico , Sistemas de Liberação de Medicamentos
13.
Crit Rev Food Sci Nutr ; : 1-32, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36377687

RESUMO

Enzymatic hydrolysis is the most prominent strategy to release bioactive peptides from different food proteins and protein-rich by-products. Unconventional microbial proteases (UMPs) have gaining increased attention for such purposes, particularly from the 2010s. In this review, we present and discuss aspects related to UMPs production, and their use to obtain bioactive protein hydrolysates. Antioxidant and anti-hypertensive potentials, commonly evaluated through in vitro testing, are mainly reported. The in vivo bioactivities of protein hydrolysates and peptides produced through UMPs action are highlighted. In addition to bioactivities, enzymatic hydrolysis acts by modulating the functional properties of proteins for potential food uses. The compiled literature indicates that UMPs are promising biocatalysts to generate bioactive protein hydrolysates, adding up to commercially available enzymes. From the recent interest on this topic, continuous and in-depth research is needed to advance toward the applicability and commercial utility of both UMPs and obtained hydrolysates.

14.
Food Microbiol ; 108: 104116, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36088121

RESUMO

Carvacrol is a natural antimicrobial with excellent antimicrobial properties against several foodborne pathogens. Encapsulation can increase carvacrol stability and solubility, and mask its pronounced odor. Mucilages have been studied as wall material for nanoparticles due to their high retention capacity of bioactive compounds and ease of chemical modifications to improve their stability. In this study, 1.67 mg/mL of carvacrol encapsulated into chia mucilage nanoparticles (CMNP) and flaxseed mucilage nanoparticles (FMNP) were produced by high-energy emulsification technique and tested against Listeria monocytogenes and Salmonella. Encapsulation efficiency around 98% of carvacrol was obtained for both formulations. CMNP showed a diameter size of 179 nm and zeta potential of -11.4 mV. Bacterial Inactivation Concentration (BIC) of CMNP was 0.42 mg/mL against Salmonella and 0.83 mg/mL against L. monocytogenes. FMNP showed diameter size of 165.3 nm and zeta potential of -12.6 mV. BIC of FMNP was 0.83 mg/mL against both microorganisms. Scanning electron microscopy analysis showed that the nanoparticles are spherically shaped. Concentrations of BIC and ½ BIC were used to evaluate the kinetics of bacterial growth in the presence of antimicrobials (CMNP, FMNP and carvacrol solution). The results of this test showed that viable counts of Salmonella and L.monocytogenes were below the detection limit (1.69 log CFU/mL) after 2 h incubation (37 °C) using CMNP at the BIC. The wall material, rehydrated chia and flaxseed mucilages, reduced L. monocytogenes growth during 24 h. However, unloaded nanoparticles kept the viable counts of both microorganisms 2-5 log CFU/mL below the control curve of microbial growth during the 48 h experiment, suggesting that nanostructured mucilages potentiate antimicrobial properties. The results indicate that CMNP and FMNP have potential for use as food preservatives.


Assuntos
Anti-Infecciosos , Linho , Listeria monocytogenes , Nanopartículas , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Cimenos , Microbiologia de Alimentos , Polissacarídeos , Salmonella
15.
Data Brief ; 43: 108343, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35677622

RESUMO

The cellular proteins of L. monocytogenes exposed to free and liposome-encapsulated nisin at sublethal concentration were hydrolyzed by trypsin and examined by tandem mass spectrometry (MS/MS) to obtain proteomic data. In the present study, we use the STRING v11.05 database analyze the interactions among the 78 upregulated proteins from L. monocytogenes obtained after treatment with sublethal concentrations of free and nanoliposome-encapsulated nisin. As result, from the upregulated proteins by free nisin was determined a network with 140 edges with two relevant nodes, containing ribosomal proteins and transmembrane transport proteins (SecD and ABC transport system). These two sets of proteins present biological connection as a group, with strong interactions and are related to detoxification and other Listeria response mechanisms. In addition, a high amount of membrane proteins was identified in the free nisin treatment. On the other hand, in the interaction analysis of upregulated proteins by liposome-loaded nisin, was found 156 edges with a single protein network, the same observed in free nisin, related to ribosomal proteins. Therefore, according with this analysis, the encapsulation of nisin into liposomes cause upregulation of ribosomal and decrease of L. monocytogenes response proteins as compared with free nisin.

16.
Cell Mol Life Sci ; 79(5): 263, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35482131

RESUMO

With the onset of Listeria monocytogenes resistance to the bacteriocin nisin, the search for alternative antimicrobial treatments is of fundamental importance. In this work, we set out to investigate proteins and lipids involved in the resistance mechanisms of L. monocytogenes against the antimicrobial peptides (AMPs) nisin and fengycin. The effect of sub-lethal concentrations of nisin and lipopeptide fengycin secreted by Bacillus velezensis P34 on L. monocytogenes was investigated by mass spectrometry-based lipidomics and proteomics. Both AMPs caused a differential regulation of biofilm formation, confirming the promotion of cell attachment and biofilm assembling after treatment with nisin, whereas growth inhibition was observed after fengycin treatment. Anteiso branched-chain fatty acids were detected in higher amounts in fengycin-treated samples (46.6%) as compared to nisin-treated and control samples (39.4% and 43.4%, respectively). In addition, a higher relative abundance of 30:0, 31:0 and 32:0 phosphatidylglycerol species was detected in fengycin-treated samples. The lipidomics data suggest the inhibition of biofilm formation by the fengycin treatment, while the proteomics data revealed downregulation of important cell wall proteins involved in the building of biofilms, such as the lipoteichoic acid backbone synthesis (Lmo0927) and the flagella-related (Lmo0718) proteins among others. Together, these results provide new insights into the modification of lipid and protein profiles and biofilm formation in L. monocytogenes upon exposure to antimicrobial peptides.


Assuntos
Bacteriocinas , Listeria monocytogenes , Nisina , Peptídeos Antimicrobianos , Lipídeos , Listeria monocytogenes/fisiologia , Nisina/farmacologia
17.
Genet Mol Biol ; 45(1): e20210201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35244137

RESUMO

Gut microbiota exerts a fundamental role in human health and increased evidence supports the beneficial role of probiotic microorganisms in the maintenance of intestinal health. Enterococcus durans LAB18S was previously isolated from soft cheese and showed some desirable in vitro probiotic properties, for that reason its genome was sequenced and evaluated for genes that can be relevant for probiotic activity and are involved in selenium metabolism. Genome sequencing was performed using the Illumina MiSeq System. A variety of genes potentially associated with probiotic properties, including adhesion capability, viability at low pH, bile salt resistance, antimicrobial activity, and utilization of prebiotic fructooligosaccharides (FOS) were identified. The strain showed tolerance to acid pH and bile salts, exhibited antimicrobial activity and thrived on prebiotic oligosaccharides. Six genes involved in selenium metabolism were predicted. Analysis of the SECIS element showed twelve known selenoprotein candidates. E. durans LAB18S was the only food isolate showing absence of plasmids, virulence and antimicrobial resistance genes, when compared with other 30 E. durans genomes. The results of this study provide evidence supporting the potential of E. durans LAB18S as alternative for probiotic formulations.

18.
Artigo em Inglês | MEDLINE | ID: mdl-34702135

RESUMO

Bacillus spp. have been used as a biocontrol strategy to eliminate/reduce toxic fungicides in viticulture. Furthermore, the presence of fungi that are resistant to commonly used products is frequent, highlighting the need for new biocontrol strains. Aspergillus carbonarius can produce ochratoxins, including ochratoxin A (OTA), which has a regulatory maximum allowable limit for grape products. The purpose of this study was to assess the ability of four Amazonian strains of Bacillus (P1, P7, P11, and P45) to biocontrol A. carbonarius and various forms of ochratoxins in grapes. Berries treated with strain P1 presented no fungal colonies (100% reduction), while P7, P11 and P45 strains caused a reduction of 95, 95 and 61% on fungal counts, respectively. Six forms of ochratoxin were found in the grapes inoculated with A. carbonarius, including ochratoxin α, ochratoxin ß, ochratoxin α methyl-ester, ochratoxin α amide, N-formyl-ochratoxin α amide, and OTA. Four of these ochratoxin forms (ochratoxin ß, ochratoxin α methyl-ester, ochratoxin α amide, N-formyl-ochratoxin α amide) are reported for the first time in grapes. These ochratoxins were identified using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QToF-MS). All Bacillus strains inhibited the synthesis of OTA, which is the most toxic form of ochratoxin. No ochratoxin form was found when P1 and P7 were used. Although some forms of ochratoxin were detected in grapes treated with Bacillus spp. P11 and P45, the levels decreased by 97%. To our knowledge, this is the first report on the inhibition of Aspergillus carbonarius-derived ochratoxin by Bacillus species. P1 strain, identified as Bacillus velezensis, was found to be the most promising for completely inhibiting fungal growth and production of all ochratoxins.


Assuntos
Aspergillus/química , Bacillus/química , Fungicidas Industriais/análise , Ocratoxinas/análise , Vitis/química , Cromatografia Líquida de Alta Pressão , Frutas/química , Espectrometria de Massas em Tandem
19.
J Appl Microbiol ; 132(3): 2067-2079, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34811844

RESUMO

AIMS: To investigate the potential of novel Bacillus velezensis P45 as an eco-friendly alternative for bioprocessing poultry by-products into valuable antimicrobial products. METHODS AND RESULTS: The complete genome of B. velezensis P45 was sequenced using the Illumina MiSeq platform, showing 4455 protein and 98 RNA coding sequences according to the annotation on the RAST server. Moreover, the genome contains eight gene clusters for the production of antimicrobial secondary metabolites and 25 putative protease-related genes, which can be related to feather-degrading activity. Then, in vitro tests were performed to determine the production of antimicrobial compounds using feather, feather meal and brain-heart infusion (BHI) cultures. Antimicrobial activity was observed in feather meal and BHI media, reaching 800 and 3200 AU ml-1 against Listeria monocytogenes respectively. Mass spectrometry analysis indicates the production of antimicrobial lipopeptides surfactin, fengycin and iturin. CONCLUSIONS: The biotechnological potential of B. velezensis P45 was deciphered through genome analysis and in vitro studies. This strain produced antimicrobial lipopeptides growing on feather meal, a low-cost substrate. SIGNIFICANCE AND IMPACT OF STUDY: The production of antimicrobial peptides by this keratinolytic strain may represent a sustainable alternative for recycling by-products from poultry industry. Furthermore, whole B. velezensis P45 genome sequence was obtained and deposited.


Assuntos
Anti-Infecciosos , Plumas , Animais , Anti-Infecciosos/farmacologia , Bacillus , Plumas/metabolismo , Genoma Bacteriano , Genômica , Lipopeptídeos/química
20.
Food Chem ; 366: 130599, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34298392

RESUMO

Nisin was encapsulated in silica through sol-gel process by acid-catalyzed routes. The silica xerogels were characterized through nitrogen adsorption isotherms, small-angle X-ray scattering (SAXS), zeta potential, X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), and Fourier transform infrared spectroscopy (FTIR). SAXS results showed that the particle diameters in a second level of aggregation varied from 4.78 to 5.86 nm. Zeta potential of silica particles were from -9.6 to -25.3 mV, while the surface area and pore diameters ranged from 216 to 598 m2 g-1 and 2.53 to 2.90 nm, respectively, indicating the formation of mesoporous nanostructures. Nisin retained the antimicrobial activity against all microorganisms tested after encapsulation in silica materials. These novel silica-based structures can be valuable carriers for nisin delivery in food systems.


Assuntos
Bacteriocinas , Nisina , Espalhamento a Baixo Ângulo , Dióxido de Silício , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...